
1

μEZ® Software
Quickstart Guide

Copyright ©2025, Future Designs, Inc., All Rights Reserved

2

Table of Contents

Contents
1. Introduction ... 3

2. Downloading uEZ® .. 4

3. Project Configuration ... 5
Preparing the uEZ® Source Code .. 5
Rowley CrossWorks CrossStudio v5.1.x Project Configuration ... 5

Check CrossStudio Version ... 5

Check Installed Packages .. 5

Opening and Compiling uEZ®... 6

Downloading and Debugging uEZ® on the Target ... 7
IAR Systems Embedded Workbench v9.60.3 Project Configuration .. 8

Check IAR Version .. 8

Opening and Compiling uEZ®... 8

Downloading and Debugging uEZ® on the Target ... 9

4. Questions and Support ... 11

Information in this document is provided solely to enable the use of Future Designs products. FDI assumes no liability whatsoever, including infringement of

any patent or copyright. FDI reserves the right to make changes to these specifications at any time, without notice. No part of this document may be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Future Designs,

Inc. 996 A Cleaner Way, Huntsville, AL 35805

NOTE: The inclusion of vendor software products in this kit does not imply an endorsement of the product by Future Designs, Inc.

© 2025 Future Designs, Inc. All rights reserved.

For more information on FDI or our products please visit www.teamfdi.com.

μEZ® is a registered trademark of Future Designs, Inc.

Microsoft, MS-DOS, Windows, Windows XP, Microsoft Word are registered trademarks of Microsoft Corporation.

Other brand names are trademarks or registered trademarks of their respective owners.

FDI PN: MA00015

Revision: Rev 2.15, 07/29/2025

Published in the United States of America

https://www.teamfdi.com/

3

1. Introduction

μEZ® takes its name from the Muses of Greek mythology. A Muse was a goddess who inspired the creation process

for the arts and sciences. Like its ancient Greek namesake, the μEZ® platform inspires rapid development by

supplying customers with an extensive library of open-source software, drivers, and processor support - all under a

common framework. μEZ® development works on the premise of “design once, reuse many times”. This provides

an open-source standard for embedded developers to build upon and support. μEZ® allows companies to focus on

innovation and on their own value-added applications while minimizing development time and maximizing

software reuse.

The diagram below shows a typical embedded application stack. μEZ® has three primary categories of components

that help simplify embedded application development:

1. Operating System Abstraction Layer (μEZ
®
 OSAL)

2. Sub-system drivers (μEZ
®
 TCP/IP, μEZ

®
 USB, μEZ

®
 Driver)

3. Hardware Abstraction Layer (μEZ
®
 HAL)

The selection of an RTOS can be one of the most daunting aspects of an embedded system development. With

μEZ® the primary features of common multi-tasking operating systems are abstracted, thus easing the transition to

an open source or low-cost RTOS. The μEZ® OSAL provides applications access to the following features in an OS-

independent fashion:

• Pre-emptive multitasking

• Stack overflow detection

• Unlimited number of tasks

• Queues

• Semaphores (binary, counting, mutex)

The μEZ® sub-system drivers utilize the OSAL functions to provide protected access to the processor

peripherals. The sub-system driver API functions are typically protocol layer interfaces (TCP/IP, USB, etc)

designed as high-level access routines such as open, close, read, write, etc. where possible.

FreeRTOSTM

µEZ® TCP/IP

Iwip

Hardware Peripheral API

µEZ® USB

Host
Device
OTG

µEZ® DRIVER

LCD

Touchscreen

File System

I2C, SPI, Etc.

Embedded Microprocessor

4

The HAL functions provide single-threaded unprotected access to the processor peripherals. Customers can

use the μEZ® HAL routines provided by FDI or they can write their own. The HAL routines provide for

RTOS/μEZ® independence and allow portability within a family of processors.

μEZ® is ideally suited for Embedded Systems with standard features such as:

• Processor and Platform BSPs

(Board Support Packages)

• Real Time Operating System (RTOS)

• Memory Management

• NAND/NOR Flash
• SDRAM and DDR Memory

• TCP/IP stack

• USB Device/Host Libraries

• Mass Storage Devices

• LCD Displays with Touch Screen

• Input / Output Devices

2. Downloading uEZ®

Start by downloading the latest version of uEZ® from https://sourceforge.net/projects/uez/. Unzip to a working folder.
In this document we will use a simple directory structure of /uEZ but the user is free to modify this as desired.

The uEZ® file directory structure should be as follows:
Directory Description

uEZ/Build Projects/makefiles for different applications/demos

uEZ/Include uEZ® system files and Config.h

uEZ/Include/Device Device Driver class definitions.

uEZ/Include/HAL Hardware Abstraction Layer (HAL) driver class definitions.

uEZ/Include/Types Common data types used by both HAL and Device Drivers.

uEZ/Source Source code

uEZ/Source/Devices/<category>/<manufacturer>/<device> Device specific code organized by category (I2C, SSP, etc.),
manufacturer, and specific device.

uEZ/Source/Library/<category>/<package> Various support libraries organized by category (graphics,
file system, etc.) and package name.

uEZ/Source/Platform/<manufacturer>/<platform> Platforms/boards code organized by manufacturer and
specific platform build.

uEZ/Source/Processor/<manufacturer>/<processor> Processor specific code in separate directories organized
by manufacturer and specific processor.

uEZ/Source/RTOS/<RTOS>/ RTOS source code in separate directories

uEZ/Source/uEZSystem uEZ® System Core routines

uEZDemos/Build Demo Project files are stored by type and specific board.

uEZDemos/Source/App User Application/Shared Demo source code

https://sourceforge.net/projects/uez/

5

3. Project Configuration

uEZ® uses a simple one project configuration. Depending on the compiler tools, use one of the following subsections.

Preparing the uEZ® Source Code
Download the uEZ® v2.15 (or later) source code from http://www.sourceforge.net/projects/uez. Extract the file to a

short directory path where you will be working, to avoid any file length limitation issues.

Rowley CrossWorks CrossStudio v5.1.x Project Configuration

 Check CrossStudio Version
uEZ® 2.15 is built using v5.1, of the Rowley CrossWorks CrossStudio for ARM® toolset. To confirm the version number

of the tools, go to “Help” → “About” in the main menu and the version number should appear in the middle of the

dialog.

Check Installed Packages
In addition, packages for your target processor(s) should be installed. Go to Tools->Show Installed Packages and see

which packages have been installed. For example,

If doing development with the NXP LPC1788/LPC4088, the following packages should be installed:

ARM CPU Support Package

NXP LPC1000 CPU Support Package

If the packages are not installed, go to “Tools” → “Download Packages from Web”, download the missing packages, and

then use “Tools” → “Install Package…” to install them.

http://www.sourceforge.net/projects/uez

6

Opening and Compiling uEZ®
Before the uEZ project can be downloaded and debugged, the uEZ Library needs to be built.

Open the library project file in the \uEZ\Build directory. For example, when working on the uEZGUI-4088-43WQN,

open “\uEZ\Build\Generic\NXP\LPC4088\FreeRTOS\CrossWorks\uEZ_NXP_LPC4088_FreeRTOS_CrossWorks.hzp".

The Project Explorer should appear at the right showing all the files in the project.

To compile the code for the first time, select “Build” → “Build uEZ_NXP_LPC4088_FreeRTOS_CrossWorks” from the

toolbar menu, or press <F7>. When complete, the output should report “Build Complete” or “Build up to date” when

done.

Close the uEZ Library project.

The uEZ distribution comes with a uEZ GUI Demonstration Application project file:

"\uEZDemos\Build\FDI\uEZGUI\uEZGUI-4088-43WQN\CrossWorks\uEZGUI-4088-43WQN.hzp".

Open the “uEZGUI-4088-43WQN.hzp” project and compile just as with the uEZ Library. Select “Build” → “Build

uEZGUI-4088-43WQN” from the toolbar menu, or press <F7>. When complete, the output should report “Build

Complete” or “Build up to date” when finished and report the memory usage for this project.

7

Downloading and Debugging uEZ® on the Target
1) Plug the J-Link device into the PC and install any drivers as directed. The Segger J-Link drivers can be found at

http://www.segger.com/cms/jlink-software.html with additional information at

http://www.segger.com/cms/development-tools.html.

2) Plug the J-Link’s JTAG cable into the target (e.g., uEZGUI-4088-43WQN’s J5 connector).

3) Power on the target board.

4) Select “View” from the toolbar and choose “Targets”. The following list will appear on the right:

5) Right click on “Segger J-Link” and select Properties,

6) If this is the first time you are programming with the J-Link on the Rowley Platform…

http://www.segger.com/cms/jlink-software.html
http://www.segger.com/cms/development-tools.html

8

a) Click on “J-Link DLL File”.

b) Press the “…” button and find the file JLinkARM.dll (usually installed in C:/Program Files/SEGGER/”)

c) If programming a blank LPC4088 part, select a Speed of 100 kHz. If the LPC4088 has already been

programmed, select a Speed of 4000 kHz.

7) Right click on “Segger J-Link”, and click “Connect Segger J-Link”.

8) Press <F5> to download the application to the target and start debugging. When the application starts, it

will pause at main(). Press <F5> again to continue executing the code.

9) To stop at any line of code, right click the line and select Toggle Breakpoint. Execution will stop automatically at

the breakpoint. Press <F5> again to continue debugging.

10) When done debugging, select “Debug” → “Stop” from the toolbar, or the <Stop> button from the Debugging
Menu. The debugger will return to standard editor mode.

11) From this point on, the process is simply a matter of editing code, compiling the code (Build->Build uEZ or

pressing F7), and then running the debugger.

IAR Systems Embedded Workbench v9.60.3 Project Configuration

Check IAR Version
uEZ® 2.15 is built using IAR 9.60.3, of the IAR Embedded Workbench Toolset and C/C++ Compiler. To confirm the version

number of the tools, go to “Help” → “About” → “Product Info” in the toolbar and the version number should appear in the

middle of the dialog.

Opening and Compiling uEZ®
Before the uEZ project can be downloaded and debugged, the uEZ Library needs to be built.

Open the library project file in the \uEZ\Build directory. For example, when working on the uEZGUI-4088-43WQN,

open "\uEZ\Build\Generic\NXP\LPC4088\FreeRTOS\IAR\uEZ_NXP_LPC4088_FreeRTOS_IAR.eww". The Project

Explorer should appear at the left, showing all the project files.

To compile the code for the first time, select “Project” → “Make” from the toolbar, or press <F7>. When complete,

the output should report “Total number of errors: 0” and “Build succeeded”.

With the uEZ Library built, close “uEZ_NXP_LPC4088_FreeRTOS_IAR.eww”. Now open the uEZ GUI Demo project:

"\uEZDemos\Build\FDI\uEZGUI\uEZGUI-4088-43WQN\IAR\uEZGUI-4088-43WQN.eww".

As in the uEZ Library project, select “Project” → “Make” from the toolbar, or press <F7>. When complete, the output

9

should report “Total number of errors: 0” and “Build succeeded”.

Downloading and Debugging uEZ® on the Target
1) Plug the J-Link device into the PC and install any drivers as directed. The Segger J-Link drivers can be found at

http://www.segger.com/cms/jlink-software.html with additional information at

http://www.segger.com/cms/development-tools.html.

2) Plug the J-Link’s JTAG cable into the target (e.g., uEZGUI-4088-43WQN’s J5 connector).

3) Power on the target board.

4) The project is preconfigured for the Segger J-Link. If the J-link software is installed after IAR, the .dll will

automatically be updated. Otherwise run the SEGGER J-Link Updater from SEGGER/J-Link ARM vx.xx in the start

menu.

http://www.segger.com/cms/jlink-software.html
http://www.segger.com/cms/development-tools.html

10

5) Select “Project” → “Download” and Debug from the toolbar, click the green “Download and Debug” button on the
toolbar, or press <Ctrl> + <D> to start debugging.

6) Debugging control can be operated from debug toolbar.

7) Debugging will pause at main(). Press <F5> or the white circle with a blue arrow inside it to continue code

execution.

8) When finished debugging press the red X in the debug toolbar.

11

4. Questions and Support

For all questions, bug reports and general technical support, go to https://sourceforge.net/projects/uez/ and use the

Sourceforge.net tools or email FDI directly at support@teamfdi.com . A support forum is also provided at

https://www.teamfdi.com/forum/ .

Marketing updates and details on technical support are available at https://www.teamfdi.com/uez.

Can we use another RTOS?

All μEZ® components are made to connect through the μEZ® OSAL (Operating System Abstraction Layer) to the RTOS

ensuring compatibility with many different RTOS’s. Currently all μEZ® development by FDI is being focused on the

FreeRTOSTM platform since it satisfies the low-cost tool requirement because it is “free”. RTOS products from other

vendors can also be used with μEZ®. FreeRTOSTM allows a migration path to SafeRTOS for those customers that need it.

See Wittenstein’s page for more details. https://www.wittenstein-us.com/Embedded-RTOS/SAFERTOS.html

Which compiler suites do you support?

Currently, most μEZ® development by FDI has been done on the following tool suites: Rowley Crossworks for ARM, and

IAR EWARM. Other compilers may be supported with μEZ® in the future.

What debug tools are available?

Since μEZ® uses the debug tools that are provided in the customers compiler suite, it can be used with any of the tools

listed above.

Which processors are supported?

Even though μEZ® is processor independent, all of our initial development has been focused on various members of the

ARM Family. We currently support the NXP LPC17xx family, the NXP LPC40xx family, and the NXP LPC43xx family. This

comprises support for Cortex™- M0/M3/M4, and other variations of ARM v7®.

https://sourceforge.net/projects/uez/
mailto:support@teamfdi.com
https://www.teamfdi.com/forum/
https://www.teamfdi.com/uez
https://www.wittenstein-us.com/Embedded-RTOS/SAFERTOS.html

